Quadratic Variational Theory and Linear Elliptic Partial Differential Equations
نویسندگان
چکیده
منابع مشابه
Linear Partial Differential Equations and Fourier Theory
Do you want a rigorous book that remembers where PDEs come from and what they look like? This highly visual introduction to linear PDEs and initial/boundary value problems connects the theory to physical reality, all the time providing a rigorous mathematical foundation for all solution methods. Readers are gradually introduced to abstraction – the most powerful tool for solving problems – rath...
متن کاملVariational Homotopy Perturbation Method for Linear Fractional Partial Differential Equations
In this article, the variational homotopy perturbation method (VHPM) [proposed in A. Noor et al., Mathematical Problems in Engineering, 1155(10) (2008), 696734] is adopted for solving linear fractional partial differential equations. The aim of this letter is to present an efficient and reliable treatment of the VHPM for the linear fractional partial differential equations. The fractional deriv...
متن کاملLinear-exponential-quadratic Gaussian Control for Stochastic Partial Differential Equations
In this paper a control problem for a controlled linear stochastic equation in a Hilbert space and an exponential quadratic cost functional of the state and the control is formulated and solved. The stochastic equation can model a variety of stochastic partial differential equations with the control restricted to the boundary or to discrete points in the domain. The solution method does not req...
متن کاملApproximation of linear quadratic feedback control for partial differential equations
Algebraic Riccati equations (ARE) of large dimension arise when using approximations to design controllers for systems modelled by partial differential equations. We use a modified Newton method to solve the ARE that takes advantage of several special features of these problems. The modified Newton method leads to a right-hand side of rank equal to the number of inputs regardless of the weights...
متن کاملOn the Solutions of Quasi-linear Elliptic Partial Differential Equations*
The literature concerning these equations being very extensive, we shall not attempt to give a complete list of references. The starting point for many more modern researches has been the work of S. Bernstein,f who was the first to prove the analyticity of the solutions of the general equation with analytic and who was able to obtain a priori bounds for the second and higher derivatives of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1961
ISSN: 0002-9947
DOI: 10.2307/1993376